Measure and Orbit Equivalence of Graph Products

Amandine Escalier joint work with Camille Horbez https://arxiv.org/abs/2401.04635

Measure Equivalence

1.1 Motivations: classification criteria

Classification up to isomorphism

- ► G and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset$, st. G, H $\circlearrowleft\Omega$
 - freely;
 - the 2 actions commute;
 - and are both transitive.

Classification up to quasi-isometry [Gromov]

- ► G QI H iff \exists locally compact space Ω st. G, H \circlearrowleft Ω
 - properly discontinuously¹
 - the 2 actions commute;
 - and both admit a compact fundamental domain².

Gromov introduced measure equivalence as a measured analogue of quasi-isometry.

1.2 Definitions

Definition 1.1

We say that G and H are measure equivalent if there exists a measure space (Ω, m) st $G, H \circlearrowleft \Omega$

- freely, measure preservingly;
- the 2 actions commute;
- and both admit a fundamental domain of finite measure.

Ex. Two lattices³ in the same locally compact group

Definition 1.2

G and H are orbit equivalent if they are measure equivalent with a common fundamental domain.

Ex. $F_2 \stackrel{\text{ME}}{\sim} F_3$ but not OE [Gaboriau].

Proposition 1.3 (Furmann-Gaboriau)

G and H are OE iff there exists a probability space (X, μ) st G, H \circlearrowleft X freely, measure preservingly and the two actions have the same orbits.

1.3 Examples

Flexibility behaviour

Theorem [Ornstein-Weiss] All amenable groups are ME to \mathbb{Z} .

1

¹properly discontinuous: for all $K \subseteq X$ compact, $|\{g \in G : gK \cap K \neq \emptyset\}| < +\infty$.

 $^{^2}$ A fundamental domain is a subset of Ω that contains exactly one element of each orbit.

³Lattices: discrete subgroups of finite covolume

Rigidity behaviour

Furman, '99 Let H be a lattice in $PSL_3(\mathbb{R})$.

If $G \stackrel{\text{ME}}{\sim} H$ then G is is commensurable up to finite kernel⁴ to another lattice in $PSL_3(\mathbb{R})$.

Kida, 'o6 If G $\stackrel{\text{ME}}{\sim}$ Mapping Class Group⁵

then G is commensurable (up to finite kernel) to it.

Guirardel-Horbez, '21 If G ME $Out(F_n)$,

then G is virtually $Out(F_n)$. $(n \ge 3)$

2 Graph products

2.1 Definition

Definition 2.1

Let Γ be a finite graph and let $\{G_{\nu}\}_{\in\Gamma}$ be a family of groups. The graph product G_{Γ} is

$$G_{\Gamma} := *_{\nu \in V\Gamma} G_{\nu} / \langle \langle [g, h] | g \in G_{\nu}, h \in G_{w}, (\nu, w) \in E\Gamma \rangle \rangle,$$

:= $\langle G_{\nu} \nu \in V\Gamma | [G_{\nu}, G_{w}] \forall (\nu, w) \in E\Gamma \rangle.$

Homeo + (S) is the group of orientation-preserving homeo of S;

It's endowed w/ the topology induced by $\delta(f,g) := \sup_{x \in S} d(f(x),g(x))$.

 $\mathsf{Homeo}_0(S)$ is the connected component of the identity for this topology. It is the set of homeo of S isotopic to the identity.

Example 2.2.

- If Γ has no edges, then $G_{\Gamma} = *_{\nu \in V\Gamma} G_{\nu}$.
- If Γ complete, then $G_{\Gamma} = \times_{\nu \in V\Gamma} G_{\nu}$.
- If $G_{\nu} = \mathbb{Z}/2\mathbb{Z}$ for all ν , G is a RACG.
- If $G_v = \mathbb{Z}$ for all v, G is a RAAG.

2.2 RAAGs and RACGs

Let W_n be the RACG over the n-gon⁶.

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_1 , A_2 be RAAG with finite Out(A_i).

Theorem 2.3 (Horbez-Huang, '21)

 $A_1 \overset{\text{ME}}{\sim} A_2 \text{ iff } \Gamma_1 \simeq \Gamma_2 \text{ iff } A_1 \simeq A_2.$

 \rightarrow This matches the QI classification⁷!

Theorem 2.4 (Huang, '17)

Let A_1 , A_2 be RAAG with finite Out(A_i).

 $A_{\Gamma_1} \text{ QI } A_{\Gamma_2} \quad \text{iff} \quad \Gamma_1 \simeq \Gamma_2 \quad \text{iff} \quad A_1 \simeq A_2.$

 $^{^4}G$ and H are commensurable if they have finite index subgroups $G_1\leqslant G$ and $H_1\leqslant H$ that are isomorphic. They are commensurable up to finite kernel if they have finite index subgroups $G_1\leqslant G$ and $H_1\leqslant H$ such that $G_1/N_G\simeq H_1/N_H$ where $N_G\leqslant G_1$ and $N_H\leqslant H_1$ are finite normal subgroups.

⁵The Mapping class group of a connected, closed, orientable surface S is the group $Mod(S) := Homeo^+(S)/Homeo_0(S)$, where

 $^{{}^6}W_n$ acts properly, cocompactly on $\mathbb{H}^2_{\mathbb{R}}$ as the group generated by the reflections over a right-angled hyperbolic n-gon. Therefore all groups W_n are cocompact discrete subgroup of $PSL_2(\mathbb{R})$ (cocompact Fuchsian), so they are all ME (in fact commensurable).

⁷This is specific to the finite Out case. There are examples of right-angled Artin groups which are quasi-isometric but not measure equivalent. For instance, the groups $G_n = (F_3 \times F_3) * F_n$ are all quasi-isometric but non pariwise ME.

➤ Goal: Extend this classification results to graph products.

Finite Outer automorphism group Let Γ finite simple graph and $\nu \in V\Gamma$. Denote $lk(\nu) := \{neighbours of \nu\}$.

We say that

- Γ is transvection free, ie. Γ does not contain 2 distinct vertices ν and w s.t. $lk(\nu) \subseteq B_{\Gamma}(w, 1)$.
- for all $v \in V\Gamma$ the induced subgraph $\Gamma \setminus B_{\Gamma}(v, 1)$ is connected. We will say that Γ does not have any partial conjugations.

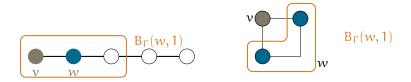


Figure 1: Graphs with transvections

Criterion [Laurence-Servatius] $Out(A_{\Gamma})$ is finite iff Γ has no transvection, no partial conjugation.

Example 2.5. If Γ is an n-gon with $n \ge 5$, then A_{Γ} has finite Out.

Example 2.6 (Out(F_n)). If Γ contains at least 2 vertices and has no edges, then $lk(\nu) = \emptyset$ for all $\nu \in V\Gamma$. Therefore, $lk(\nu) \subset B(w,1)$ for all $\nu \neq w$. Hence Γ has transvections and therefore Out(A_{Γ}) is infinite. Recall that if Γ has no edges then A_{Γ} is a free group. We thus just checked that Out(F_n) is infinite ($n \geq 2$).

Remark 2.7 (Why this terminology?). The names (having transvections or partial conjugations) comes from the corresponding automorphisms one can define in this setting. More precisely: Since we are considering RAAGs, $G_{\nu}=\mathbb{Z}$ for all $\nu\in V\Gamma$. Denote by $s_{\nu}=1_{G_{\nu}}$ the standard generator of G_{ν} .

- If there exists $v \neq w \in V\Gamma$ st. $lk(v) \subseteq B_{\Gamma}(w,1)$, then one can define $\varphi \in Aut(A_{\Gamma})$ by letting $\varphi(s_v) := s_v s_w$ and $\varphi(s_u) = s_u$ for all $u \neq v$. Such an automorphism is called a transvection.
- If there exists $v \in V\Gamma$ st. the induced subgraph $\Gamma \setminus B_{\Gamma}(v,1)$ is disconnected. Let C be one connected component of $\Gamma \setminus B_{\Gamma}(v,1)$. Then one can define $\phi \in \operatorname{Aut}(A_{\Gamma})$ by letting $\phi(s_w) = s_v s_w s_v^{-1}$ for all $w \in C$ and $\phi(s_u) = s_u$ for all $u \notin C$. Such an automorphism is called a partial conjugation.

2.3 ME classification of graph products

```
Theorem 2.8 (E.-Horbez '24)

If |V\Gamma|, |V\Lambda| \ge 2 and

\blacktriangleright \Gamma, \Lambda transvection free, have no partial conjugat°;

\blacktriangleright G_{\nu}, H_{w} are countably infinite \forall \nu \in \Gamma, w \in \Lambda;

then,

G_{\Gamma} \overset{ME}{\sim} H_{\Lambda};

\Leftrightarrow G_{\Gamma} \overset{OE}{\sim} H_{\Lambda};

\Leftrightarrow There \ exists \ a \ graph \ isomorphism \ \theta : \Gamma \to \Lambda \ st.

G_{\nu} \overset{OE}{\sim} H_{\theta(\nu)} \ for \ all \ \nu \in V\Gamma.
```

Example 2.9. The two graph products from figure 2 are not measure equivalent.

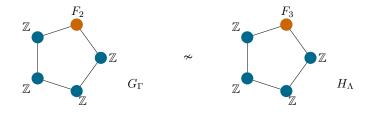


Figure 2: Two graph products that are not measure equivalent

Remark 2.10. We actually show that every measure equivalence coupling is an orbit equivalence coupling.

Corollary 2.11 (EH, '24)

Under the same hypotheses

 G_{Γ} and H_{Λ} are commensurable;

- \Leftrightarrow G_{Γ} and H_{Λ} are strongly commensurable;
- \Leftrightarrow There exists a graph isoM $\theta: \Gamma \to \Lambda$ st. G_{ν} and $H_{\theta(\nu)}$ strongly commensurable, for all $\nu \in V\Gamma$.

G and H are strongly commensurable if the isomorphic finite index subgroups G_1 and H_1 have the same finite index.

Remark 2.12. The proof of this corollary relies on the following criterion: Two countable groups G and H are commensurable if and only if there exists a non-empty countable set Ω equipped with commuting free actions of G and H such that each actions admits a finite fundamental domain.

In particular commensurable implies QI and commensurable up to finite kernel implies ME.

3 Some tools

3.1 Extension graphs

 \blacktriangleright Extension graph of G_{Γ} : the graph Γ_G^e such that

$$V\Gamma_G^e := \left\{ gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G \right\},$$

 $\mathsf{E}\Gamma_\mathsf{G}^e$ vertices linked by an edge iff they commute

▶ G acts on Γ_G^e by conjugation.

A fundamental domain is the subgraph spanned by $\{G_{\nu} : \nu \in V\Gamma\}$.

Theorem 3.1 (E.-Horbez)

If $|V\Gamma|, |V\Lambda| \geqslant 2$ and

- ightharpoonup Γ , Λ transvection free, have no partial conjugat $^{\rm o}$;
- ▶ G_v , H_w are countably infinite $\forall v \in \Gamma$, $w \in \Lambda$, then

$$G_\Gamma \overset{ME}{\sim} H_\Gamma \quad \Rightarrow \quad \Gamma_G^e \simeq \Gamma_H^e \ .$$

3.2 Strategy

Show that $G \stackrel{ME}{\sim} H \Rightarrow G \stackrel{OE}{\sim} H$

Goal: Find a common fundamental domain

- 1. Work w/ actions we understand \rightarrow Extension graph Γ_G^e , Γ_H^e
- 2. Show: $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$
- 3. Find an equivariant map $\theta: \Omega \to \text{Isom}(\Gamma_G^e, \Gamma_H^e)$.
- 4. Find a common fundamental domain $Y \subset \text{Isom}(\Gamma_G^e, \Gamma_H^e)$.
- 5. $X := \theta^{-1}(Y)$ is a common fundamental domain in Ω .