MEASURE AND ORBIT EQUIVALENCE OF GRAPH PRODUCTS

Amandine Escalier

Université Lyon 1

Joint work with Camille Horbez

https://s.42l.fr/AEConf

I — Measure Equivalence

Measured Dunamics

Geometric group theory

 \succ G and H are isomorphic

 \succ G and H are isomorphic iff ∃ a countable set $Ω \neq ∅$, st.

 $\succ G$ and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset,$ st.G, $H \circlearrowleft \Omega$

 \succ freely;

▶ G and H are isomorphic iff \exists a countable set $Ω \neq ∅$, st.G, H𝒢Ω

- ➤ freely;
- \rightarrow the 2 actions commute;

▶ G and H are isomorphic iff \exists a countable set $Ω \neq ∅$, st.G, H𝒢Ω

- ➤ freely;
- ➤ the 2 actions commute;
- > and are both transitive.

▶ G and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset$, st.G, $H \circlearrowleft \Omega$

- ➤ freely;
- ➤ the 2 actions commute;
- ➤ and are both transitive.
- ➤ [Gromov] G and H are quasi-isometric

- ▶ G and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset$, st.G, H $\circlearrowleft\Omega$
 - ➤ freely;
 - ➤ the 2 actions commute;
 - > and are both transitive.
- ▶ [Gromov] G and H are quasi-isometric iff \exists a locally compact space Ω , st.

- ▶ G and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset$, st.G, $H \circlearrowleft \Omega$
 - ➤ freely;
 - ➤ the 2 actions commute;
 - ➤ and are both transitive.
- → [Gromov] G and H are quasi-isometric iff \exists a locally compact space Ω , st.G, H \circlearrowleft Ω
 - ➤ properly discontinuously;

- ▶ G and H are isomorphic iff \exists a countable set $\Omega \neq \emptyset$, st.G, $H \circlearrowleft \Omega$
 - ➤ freely;
 - ➤ the 2 actions commute;
 - ➤ and are both transitive.
- > [Gromov] G and H are quasi-isometric iff \exists a locally compact space Ω , st.G, H \circlearrowleft Ω
 - ➤ properly discontinuously;
 - ➤ the 2 actions commute;

- ▶ G and H are isomorphic iff \exists a countable set $Ω \neq ∅$, st.G, H𝒢Ω
 - ➤ freely;
 - > the 2 actions commute;
 - > and are both transitive.
- ightharpoonup [Gromov] G and H are quasi-isometric iff \exists a locally compact space Ω , st.G, H $\circlearrowleft\Omega$
 - ➤ properly discontinuously;
 - ➤ the 2 actions commute;
 - ➤ and both admit a compact fundamental domain.

A fundamental domain is a subset of Ω that contains exactly one element of each orbit.

Definition. G and H are measure equivalent if

Definition. G and H are measure equivalent if there exists a measured space (Ω, \mathfrak{m})

Definition. G and H are measure equivalent if there exists a measured space (Ω, m) st G, H O Ω

➤ freely, measure preservingly;

Definition. G and H are measure equivalent if there exists a measured space (Ω, m) st $G, H \circlearrowleft \Omega$

- ➤ freely, measure preservingly;
- \triangleright the 2 actions commute;

Definition. G and H are measure equivalent if there exists a measured space (Ω, m) st $G, H \circlearrowleft \Omega$

- ➤ freely, measure preservingly;
- ➤ the 2 actions commute;
- ➤ each admit a fundamental domain of *finite* measure.

Definition. G and H are measure equivalent if there exists a measured space (Ω, \mathfrak{m}) st $G, H \circlearrowleft \Omega$

- ➤ freely, measure preservingly;
- ➤ the 2 actions commute;
- ➤ each admit a fundamental domain of *finite* measure.

Ex. Two lattices in a same locally compact group.

Definition. G and H are measure equivalent if there exists a measured space (Ω, \mathfrak{m}) st $G, H \circlearrowleft \Omega$

- ➤ freely, measure preservingly;
- ➤ the 2 actions commute;
- ➤ each admit a fundamental domain of *finite* measure.

Ex. Two lattices in a same locally compact group.

Ex. If $H \leq G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are measure equivalent if there exists a measured space (Ω, m) st $G, H \circlearrowleft \Omega$

- ➤ freely, measure preservingly;
- ➤ the 2 actions commute;
- ➤ each admit a fundamental domain of *finite* measure.

Ex. Two lattices in a same locally compact group.

Ex. If $H \leq G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are **orbit equivalent** if they are ME with a common fundamental domain.

Ex. Two lattices in a same locally compact group are ME.

Ex. If $H \leq G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are **orbit equivalent** if they are ME with a common fundamental domain.

Ex. Two lattices in a same locally compact group are ME. **Ex.** If $H \leq G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are orbit equivalent if they are ME with a common fundamental domain.

Ex. $F_2 \stackrel{\text{ME}}{\sim} F_3$ but not OE [Gaboriau].

Ex. Two lattices in a same locally compact group are ME. **Ex.** If $H \le G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are **orbit equivalent** if they are ME with a common fundamental domain.

Ex. $F_2 \stackrel{\text{ME}}{\sim} F_3$ but not OE [Gaboriau].

Theorem. [Furmann-Gaboriau] If $G \stackrel{\mathrm{OE}}{\sim} H$, then there exists a proba space (X,μ) st

Ex. Two lattices in a same locally compact group are ME. **Ex.** If $H \leq G$ is of finite index, then $G \stackrel{\text{ME}}{\sim} H$.

Definition. G and H are orbit equivalent if they are ME with a common fundamental domain.

Ex. $F_2 \stackrel{\text{ME}}{\sim} F_3$ but not OE [Gaboriau].

Theorem. [Furmann-Gaboriau] If $G \stackrel{\mathrm{OE}}{\sim} H$, then there exists a proba space (X, μ) st $G, H \circlearrowleft X$ freely, measure preservingly, with the same orbits.

Flexibility

Flexibility

Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : $\mathbb{Z}^d,\;BS(1,n),\;\mathbb{Z}/2\mathbb{Z}\wr\mathbb{Z},...$

Flexibility

Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : \mathbb{Z}^d , BS(1,n), $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z},...$

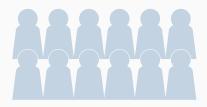
Amenable groups: Geometric point of view

Flexibility

Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : \mathbb{Z}^d , BS(1,n), $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z},...$

Amenable groups: Geometric Vs. Ergodic point of view



Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : $\mathbb{Z}^d,\;BS(1,n),\;\mathbb{Z}/2\mathbb{Z}\wr\mathbb{Z},...$

Theorem. [Ornstein-Weiss, '80]

All infinite countable amenable groups are OE to $\mathbb{Z}.$

Ex. of amenable groups : \mathbb{Z}^d , BS(1,n), $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z},...$

Rigidity

➤ [Kida, '06]

If G ^{ME} Mapping Class Group

Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : $\mathbb{Z}^d,\;BS(1,n),\;\mathbb{Z}/2\mathbb{Z}\wr\mathbb{Z},...$

Rigidity

▶ [Kida, '06]
If $G \stackrel{\mathrm{ME}}{\sim}$ Mapping Class Group
then G commensurable (up to finite kernel) to it.

Theorem. [Ornstein-Weiss, '80] All infinite countable amenable groups are OE to \mathbb{Z} .

Ex. of amenable groups : $\mathbb{Z}^d,\;BS(1,n),\;\mathbb{Z}/2\mathbb{Z}\wr\mathbb{Z},...$

Rigidity

➤ [Kida, '06]

If $G \stackrel{\mathrm{ME}}{\sim}$ Mapping Class Group
then G commensurable (up to finite kernel) to it.
then G is "almost" a MCG itself.

Theorem. [Ornstein-Weiss, '80]

All infinite countable amenable groups are OE to $\mathbb{Z}.$

Ex. of amenable groups : \mathbb{Z}^d , BS(1,n), $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$,...

Rigidity

▶ [Kida, '06] If $G \stackrel{ME}{\sim}$ Mapping Class Group then G commensurable (up to finite kernel) to it. then G is "almost" a MCG itself.

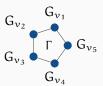
➤ [Guirardel-Horbez, '21] If $G \stackrel{\mathrm{ME}}{\sim} \mathrm{Out}(F_n)$ $(n \ge 3)$ Then G is virtually isomorphic to $\mathrm{Out}(F_n)$.

II — Graph Products and RAAGs, and RACGs

II.1 — Graph Product : Definition

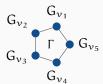
Definition. Let Γ be a finite graph

Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups.



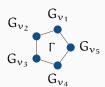
Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$G_{\Gamma} := *_{\nu \in V\Gamma} G_{\nu} / \left\langle \! \left\langle [g,h] \right. \right. g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \right\rangle \! \right\rangle$$



Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$\begin{split} G_{\Gamma} &:= *_{\nu \in V\Gamma} G_{\nu} / \big\langle \! \big\langle [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \! \big\rangle \\ &= \big\langle G_{\nu}, \, \nu \in V\Gamma \mid [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \,. \end{split}$$

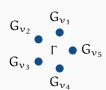


Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$\begin{split} G_{\Gamma} &:= *_{\nu \in V\Gamma} G_{\nu} / \big\langle \! \big\langle [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \! \big\rangle \\ &= \big\langle G_{\nu}, \ \nu \in V\Gamma \mid [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \,. \end{split}$$

Ex.

 $\blacktriangleright \ \, \text{If Γ has no edges, then } \, G_\Gamma = *_{\nu \in V\Gamma} G_\nu.$



Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$\begin{split} G_{\Gamma} &:= *_{\nu \in V\Gamma} G_{\nu} / \big\langle\! \big\langle [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle\! \big\rangle \\ &= \big\langle G_{\nu}, \, \nu \in V\Gamma \mid [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \,. \end{split}$$

Ex.

- ▶ If Γ has no edges, then $G_{\Gamma} = *_{\nu \in V\Gamma} G_{\nu}$.
- If Γ complete, then $G_{\Gamma} = \times_{\nu \in V\Gamma} G_{\nu}$.

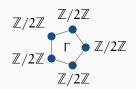


Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$\begin{split} G_{\Gamma} &:= *_{\nu \in V\Gamma} G_{\nu} / \big\langle \! \big\langle [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \! \big\rangle \\ &= \big\langle G_{\nu}, \, \nu \in V\Gamma \mid [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \,. \end{split}$$

Ex.

- If Γ has no edges, then $G_{\Gamma} = *_{\nu \in V\Gamma} G_{\nu}$.
- If Γ complete, then $G_{\Gamma} = \times_{\nu \in V\Gamma} G_{\nu}$.
- ▶ If $G_{\nu} = \mathbb{Z}/2\mathbb{Z}$ for all ν , G_{Γ} is a RACG.



Definition. Let Γ be a finite graph and let $\{G_{\nu}\}_{\nu \in V\Gamma}$ be a family of groups. The **graph product** G_{Γ} is defined as

$$\begin{split} G_{\Gamma} &:= *_{\nu \in V\Gamma} G_{\nu} / \big\langle \! \big\langle [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \! \big\rangle \\ &= \big\langle G_{\nu}, \, \nu \in V\Gamma \mid [g,h] \ g \in G_{\nu}, \ h \in G_{w}, \ (\nu,w) \in E\Gamma \big\rangle \,. \end{split}$$

Ex.

- If Γ has no edges, then $G_{\Gamma} = *_{\nu \in V\Gamma} G_{\nu}$.
- If Γ complete, then $G_{\Gamma} = \times_{\nu \in V\Gamma} G_{\nu}$.
- ▶ If $G_{\nu} = \mathbb{Z}/2\mathbb{Z}$ for all ν , G_{Γ} is a RACG.
- ▶ If $G_{\nu} = \mathbb{Z}$ for all ν , G_{Γ} is a RAAG.

For all $n, m \ge 5$ W_n and W_m are ME.

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_{Γ_1} , A_{Γ_2} be RAAG st. $\operatorname{Out}(A_{\Gamma_i})$ is finite for all $i \in \{1,2\}$.

For all $n, m \ge 5$ W_n and W_m are ME.

Let $A_{\Gamma_1},\,A_{\Gamma_2}$ be RAAG st. $\operatorname{Out}(A_{\Gamma_i})$ is finite for all $i\in\{1,2\}$.

Theorem. [Horbez-Huang, '21]

$$A_{\Gamma_1} \stackrel{\mathrm{ME}}{\sim} A_{\Gamma_2} \quad \mathrm{iff} \quad \Gamma_1 \simeq \Gamma_2$$

II.2 — The case of Right Angled Artin and Coxeter Groups

Let W_n be the RACG over the n-gon.

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_{Γ_1} , A_{Γ_2} be RAAG st. $\operatorname{Out}(A_{\Gamma_i})$ is finite for all $i \in \{1,2\}$.

Theorem. [Horbez-Huang, '21]

$$A_{\Gamma_1} \overset{\mathrm{ME}}{\sim} A_{\Gamma_2} \quad \text{iff} \quad \Gamma_1 \simeq \Gamma_2 \quad \text{iff} \quad A_{\Gamma_1} \simeq A_{\Gamma_2} \ .$$

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_{Γ_1} , A_{Γ_2} be RAAG st. $Out(A_{\Gamma_i})$ is finite for all $i \in \{1,2\}$.

Theorem. [Horbez-Huang, '21]

$$A_{\Gamma_1} \ \stackrel{\mathrm{ME}}{\sim} \ A_{\Gamma_2} \quad \text{iff} \quad \Gamma_1 \simeq \Gamma_2 \quad \text{iff} \quad A_{\Gamma_1} \simeq A_{\Gamma_2} \ .$$

This matches the QI classification!

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_{Γ_1} , A_{Γ_2} be RAAG st. $Out(A_{\Gamma_i})$ is finite for all $i \in \{1,2\}$.

Theorem. [Horbez-Huang, '21]

$$A_{\Gamma_1} \ \stackrel{\mathrm{ME}}{\sim} \ A_{\Gamma_2} \quad \text{iff} \quad \Gamma_1 \simeq \Gamma_2 \quad \text{iff} \quad A_{\Gamma_1} \simeq A_{\Gamma_2} \ .$$

This matches the QI classification!

II.2 — The case of Right Angled Artin and Coxeter Groups

Let W_n be the RACG over the n-gon.

For all $n, m \ge 5$ W_n and W_m are ME.

Let A_{Γ_i} , A_{Γ_i} be RAAG st. Out(A_{Γ_i}) is finite for all $i \in \{1, 2\}$.

Theorem. [Horbez-Huang, '21]

$$A_{\Gamma_1} \ \stackrel{\mathrm{ME}}{\sim} \ A_{\Gamma_2} \quad \text{iff} \quad \Gamma_1 \simeq \Gamma_2 \quad \text{iff} \quad A_{\Gamma_1} \simeq A_{\Gamma_2} \ .$$

This matches the QI classification!

Th. [Huang, '17] A_{Γ_1} QI A_{Γ_2} iff $\Gamma_1 \simeq \Gamma_2$.

 ${
m II.2}$ — The case of Right Angled Artin and Coxeter Groups

\rightarrow Finite Out

\rightarrow Finite Out

Criterion. [Laurence-Servatius]

 $Out(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Criterion. [Laurence-Servatius]

 $Out(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the set of neighbors of ν .

Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the **set of neighbors of** ν . We say that Γ has

Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the set of neighbors of ν . We say that Γ has

Transvections if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.

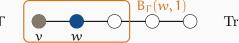
Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the set of neighbors of ν . We say that Γ has

Transvections if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.



Transvection

Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the **set of neighbors of** ν . We say that Γ has

Transvections if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.

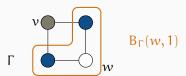
Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the **set of neighbors of** ν . We say that Γ has

Transvections if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.



Transvection

Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the **set of neighbors of** ν . We say that Γ has

- **Transvections** if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.
- ▶ Partial Conjugations if $\exists v \in V\Gamma$, st $\Gamma \setminus B_{\Gamma}(v, 1)$ is disconnected.

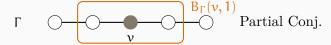
Criterion. [Laurence-Servatius]

 $\operatorname{Out}(A_{\Gamma})$ is finite

iff [Two conditions on Γ are verified]

Let Γ be a graph and $lk(\nu)$, the set of neighbors of ν . We say that Γ has

- **Transvections** if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.
- ▶ Partial Conjugations if $\exists v \in V\Gamma$, st $\Gamma \setminus B_{\Gamma}(v, 1)$ is disconnected.



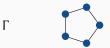
Criterion. [Laurence-Servatius]

 $Out(A_{\Gamma})$ is finite

iff Γ has no transvection, no partial conjugation.

Let Γ be a graph and $lk(\nu)$, the set of neighbors of ν . We say that Γ has

- **Transvections** if $\exists v \neq w \in V\Gamma \ lk(v) \subseteq B_{\Gamma}(w, 1)$.
- ▶ Partial Conjugations if $\exists v \in V\Gamma$, st $\Gamma \setminus B_{\Gamma}(v, 1)$ is disconnected.



finite $\operatorname{Out}(A_\Gamma)$

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

ightharpoonup Γ, Λ are transvection free w/ no partial conj.;

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

- ightharpoonup Γ , Λ are transvection free w/ no partial conj.;
- ▶ G_{ν} , H_{w} are countably infinite $\forall \nu \in \Gamma$, $w \in \Lambda$; then,

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

- \triangleright Γ , Λ are transvection free w/ no partial conj.;
- ▶ G_{ν} , H_{w} are countably infinite $\forall \nu \in \Gamma$, $w \in \Lambda$; then,

$$G_\Gamma \overset{\mathrm{ME}}{\sim} H_\Lambda$$

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and $\rightarrow \Gamma, \Lambda$ are transvection free w/ no partial conj.;

▶ G_{ν} , H_{w} are countably infinite $\forall \nu \in \Gamma$, $w \in \Lambda$; then,

 $\mathsf{G}_\Gamma \overset{\mathrm{ME}}{\sim} \mathsf{H}_\Lambda \quad \Leftrightarrow \quad \mathsf{G}_\Gamma \overset{\mathrm{OE}}{\sim} \mathsf{H}_\Lambda$

```
Theorem. [E.-Horbez, '24] If |V\Gamma|, |V\Lambda| \ge 2 and \rightarrow \Gamma, \Lambda are transvection free w/ no partial conj.; \rightarrow G_{\nu}, H_{w} are countably infinite \forall \nu \in \Gamma, w \in \Lambda; then, G_{\Gamma} \stackrel{\mathrm{ME}}{\sim} H_{\Lambda} \Leftrightarrow G_{\Gamma} \stackrel{\mathrm{OE}}{\sim} H_{\Lambda} \Leftrightarrow \mathrm{There} \ \mathrm{exists} \ \mathrm{a} \ \mathrm{graph} \ \mathrm{isomorphism}  \theta : \Gamma \rightarrow \Lambda \ \mathrm{st.} \ G_{\nu} \stackrel{\mathrm{OE}}{\sim} H_{\theta(\nu)} \ \mathrm{for} \ \mathrm{all} \ \nu \in V\Gamma.
```

Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

- \triangleright Γ , Λ are transvection free w/ no partial conj.;
- \rightarrow G_{ν} , H_{w} are countably infinite $\forall \nu \in \Gamma$, $w \in \Lambda$;

then,

$$G_{\Gamma} \stackrel{\mathrm{ME}}{\sim} H_{\Lambda} \quad \Leftrightarrow \quad G_{\Gamma} \stackrel{\mathrm{OE}}{\sim} H_{\Lambda}$$

⇔ There exists a graph isomorphism

 $\theta: \Gamma \to \Lambda$ st. $G_{\nu} \stackrel{\mathrm{OE}}{\sim} H_{\theta(\nu)}$ for all $\nu \in V\Gamma$.

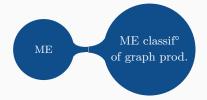
Theorem. [E.-Horbez, '24] If $|V\Gamma|, |V\Lambda| \ge 2$ and

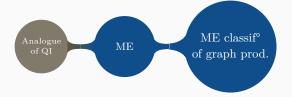
- \triangleright Γ , Λ are transvection free w/ no partial conj.;
- \rightarrow G_{ν} , H_{w} are countably infinite $\forall \nu \in \Gamma$, $w \in \Lambda$;

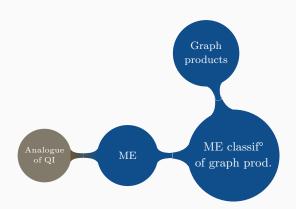
then,

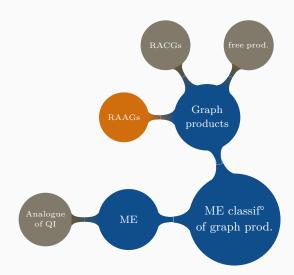
Summary

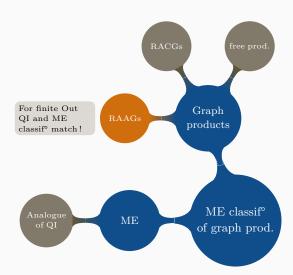
ME classif° of graph prod.

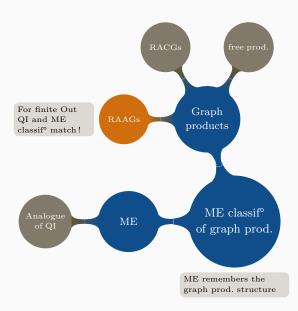


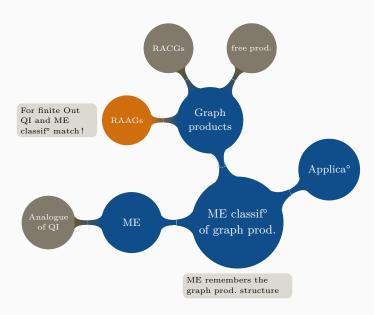


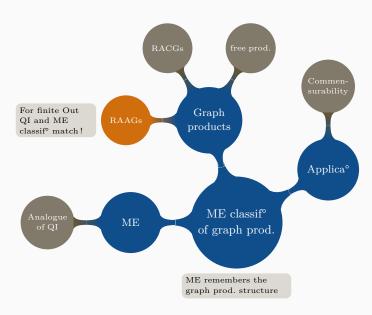


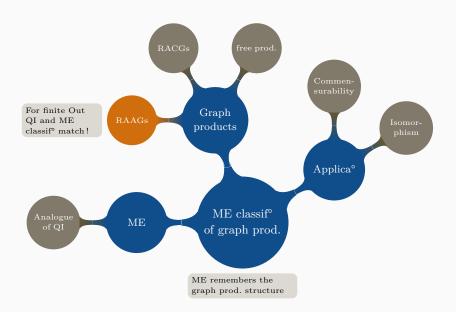


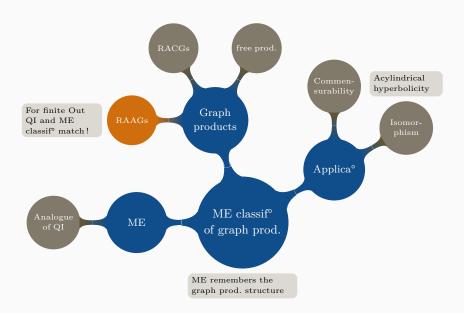










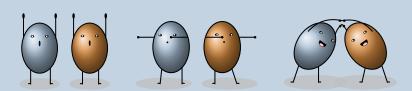


III — Tools

When geometry meets measured groupoids

III — Tools

When geometry meets measured groupoids



 \blacktriangleright Extension graph Γ_G^{ε}

$$V\Gamma_G^e := \left\{ gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G \right\},\,$$

$$V\Gamma_G^e := \left\{ gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G \right\},$$

 $\mathsf{E} \mathsf{\Gamma}_\mathsf{G}^e$ vertices linked by an edge iff they commute

$$\begin{split} &V\Gamma_G^e := \left\{ gG_{\nu}g^{-1} \mid g \in G, \; \nu \in V\Gamma_G \right\}, \\ &E\Gamma_G^e \text{ vertices linked by an edge iff they commute} \end{split}$$

▶ G acts on Γ_G^e by conjugation.

$$V\Gamma_G^e := \{gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G\},\$$

 $E\Gamma_G^e$ vertices linked by an edge iff they commute

▶ G acts on Γ_G^e by conjugation.

Fundamental domain : Subgraph spanned by $\{G_{\nu} \ : \ \nu \in V\Gamma\}$.

$$V\Gamma_G^e := \{gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G\},$$

 $E\Gamma_G^e$ vertices linked by an edge iff they commute

▶ G acts on Γ_G^e by conjugation.

Fundamental domain : Subgraph spanned by $\{G_{\nu} : \nu \in V\Gamma\}$.

Theorem. [E.-Horbez] If

- $ightharpoonup |V\Gamma|, |V\Lambda| \geqslant 2$ and
- \triangleright Γ , Λ are transvection free w/ no partial conj. then

$$V\Gamma_G^e := \{gG_{\nu}g^{-1} \mid g \in G, \ \nu \in V\Gamma_G\},$$

 $E\Gamma_G^e$ vertices linked by an edge iff they commute

▶ G acts on Γ_G^e by conjugation. Fundamental domain : Subgraph spanned by $\{G_{\nu} : \nu \in V\Gamma\}$.

Theorem. [E.-Horbez] If

- ▶ $|V\Gamma|, |V\Lambda| \ge 2$ and
- \triangleright Γ , Λ are transvection free w/ no partial conj. then

$$G_{\Gamma} \overset{\mathrm{ME}}{\sim} H_{\Gamma} \quad \Rightarrow \quad \Gamma_{G}^{e} \simeq \Gamma_{H}^{e} \ .$$

$$\begin{array}{c} {\rm III-Tools} \\ {\rm III.2-Strategy} \end{array}$$

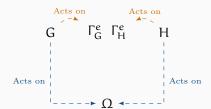
$$\begin{array}{c} {\rm III-Tools} \\ {\rm III.2-Strategy} \end{array}$$

 $\mathbf{Goal}:$ Find a common fundamental domain

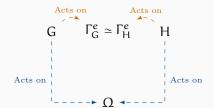
Goal: Find a common fundamental domain

1. Work w/ actions we understand

- 1. Work w/ actions we understand
 - $\rightarrow \mathbf{Extension} \ \mathbf{graph} \ \Gamma_G^e, \ \Gamma_H^e$



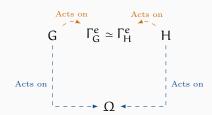
- 1. Work w/ actions we understand
 - $\rightarrow \mathbf{Extension} \ \mathbf{graph} \ \Gamma_G^e, \ \Gamma_H^e$
- 2. Show : $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$



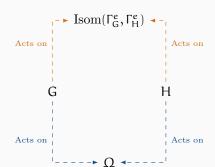
Goal: Find a common fundamental domain

- 1. Work w/ actions we understand
 - \rightarrow Extension graph Γ_{G}^{e} , Γ_{H}^{e}
- 2. Show : $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$

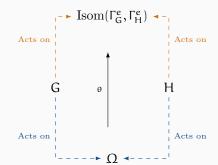
 $\mathrm{Isom}(\Gamma_G^e,\Gamma_H^e)$



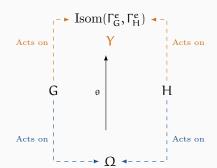
- 1. Work w/ actions we understand
 - $\rightarrow \mathbf{Extension} \ \mathbf{graph} \ \Gamma_G^e, \ \Gamma_H^e$
- 2. Show : $G \stackrel{\mathrm{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$



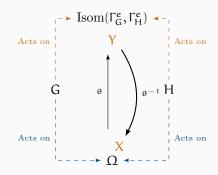
- 1. Work w/ actions we understand \rightarrow Extension graph Γ_G^e , Γ_H^e
- 2. Show: $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$
- 3. Find an equivariant map $\theta: \Omega \to \operatorname{Isom}(\Gamma_G^e, \Gamma_H^e)$.



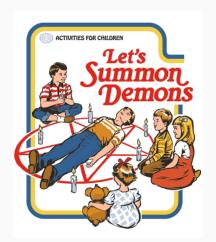
- Work w/ actions we understand
 → Extension graph Γ^e_G, Γ^e_H
- 2. Show: $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$
- 3. Find an equivariant map $\theta: \Omega \to \operatorname{Isom}(\Gamma_G^e, \Gamma_H^e)$.
- 4. Find a common fundamental domain $Y \subset \text{Isom}(\Gamma_G^e, \Gamma_H^e)$.



- 1. Work w/ actions we understand \rightarrow **Extension graph** Γ_G^e , Γ_H^e
- 2. Show : $G \stackrel{\text{ME}}{\sim} H \Rightarrow \Gamma_G^e \simeq \Gamma_G^e$
- 3. Find an equivariant map $\theta: \Omega \to \mathrm{Isom}(\Gamma_G^e, \Gamma_H^e)$.
- Find a common fundamental domain Y ⊂ Isom(Γ^e_G, Γ^e_H).
- 5. $X := \theta^{-1}(Y)$ is a common fundamental domain in Ω .



Appendix Vertex type groupoids



Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

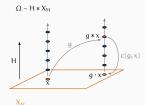
Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

▶ Let G, H be ME over (Ω, m) and X_G, X_H their resp. fundamental dom.

Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

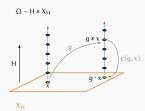
Let G, H be ME over (Ω, m) and X_G, X_H their resp. fundamental dom.

$$G \curvearrowright X_H \ via \{g \cdot x\} = X_H \cap (H * g * x).$$



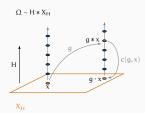
Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

- \triangleright Let G, H be ME over (Ω, \mathfrak{m}) and X_G, X_H their resp. fundamental dom. $G \curvearrowright X_H via \{a \cdot x\} = X_H \cap (H * a * x).$
- ➤ The OE relations coincide on $X := X_G \cap X_H$. (Up to translating X_G, X_H).



Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

- ➤ Let G, H be ME over (Ω, \mathfrak{m}) and X_G, X_H their resp. fundamental dom. $G \curvearrowright X_H \ via \{g \cdot x\} = X_H \cap (H * g * x).$
- The OE relations coincide on X := X_G ∩ X_H.
 (Up to translating X_G, X_H).
- ightharpoonup Let $x,y\in X$ in the same orbit.



Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

▶ Let $x, y \in X$ in the same orbit. Let

Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

▶ Let $x, y \in X$ in the same orbit. Let

(x,y)

Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

▶ Let $x, y \in X$ in the same orbit. Let

(x,y)

Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

 \blacktriangleright Let $x, y \in X$ in the same orbit. Let

$$(x,y) \stackrel{\rho_G}{\longmapsto} g \quad \text{st } y = g \cdot x,$$

Step 1 Show that there is an isometry $\mathcal{E}_{\mathsf{G}} \to \mathcal{E}_{\mathsf{H}}$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

 \blacktriangleright Let $x,y\in X$ in the same orbit. Let

$$(x,y) \xrightarrow{\rho_G} g$$
 st $y = g \cdot x$,
 $\xrightarrow{\rho_H} h$ st $y = h \cdot x$.

▶ Theoretical goal For $V \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$

Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

 \blacktriangleright Let $x,y \in X$ in the same orbit. Let

$$(x,y) \xrightarrow{\rho_G} g$$
 st $y = g \cdot x$,
 $\xrightarrow{\rho_H} h$ st $y = h \cdot x$.

▶ Theoretical goal For $\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$ show that

$$\begin{split} \left(\exists P \in V \mathcal{E}_G \right) & \quad \mathcal{V} = \rho_G^{-1} \left(P \right) \\ \Leftrightarrow \left(\exists Q \in V \mathcal{E}_H \right) & \quad \mathcal{V} = \rho_H^{-1} \left(Q \right) \end{split}$$

Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

 \blacktriangleright Let $x,y \in X$ in the same orbit. Let

$$(x,y) \xrightarrow{\rho_G} g$$
 st $y = g \cdot x$,
 $\xrightarrow{\rho_H} h$ st $y = h \cdot x$.

▶ Theoretical goal For $\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$ show that

$$\begin{split} \left(\exists P \in V \mathcal{E}_G \right) & \quad \mathcal{V} = \rho_G^{-1} \left(P \right) \\ \Leftrightarrow \left(\exists Q \in V \mathcal{E}_H \right) & \quad \mathcal{V} = \rho_H^{-1} \left(Q \right) \end{split}$$

Step 1 Show that there is an isometry $\mathcal{E}_G \to \mathcal{E}_H$.

Recall : The OE relations coincide on $X := X_G \cap X_H$.

 \blacktriangleright Let $x,y \in X$ in the same orbit. Let

$$(x,y) \xrightarrow{\rho_G} g$$
 st $y = g \cdot x$,
 $\xrightarrow{\rho_H} h$ st $y = h \cdot x$.

▶ Theoretical goal For $\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$ show that

$$\begin{split} \left(\exists P \in V \mathcal{E}_G \right) & \quad \mathcal{V} = \rho_G^{-1} \left(P \right) \\ \Leftrightarrow \left(\exists Q \in V \mathcal{E}_H \right) & \quad \mathcal{V} = \rho_H^{-1} \left(Q \right) \end{split}$$

$$\begin{split} \left(\exists \nu \in V\Gamma_{G}, g \in G\right) & \mathcal{V} = \rho_{G}^{-1}\left(gG_{\nu}g^{-1}\right) \\ \Leftrightarrow \left(\exists w \in V\Gamma_{H}, h \in H\right) & \mathcal{V} = \rho_{H}^{-1}\left(hH_{w}h^{-1}\right). \end{split}$$

▶ Vertices For $V \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$ show that

$$\begin{split} \left(\exists \nu \in V\Gamma_G, g \in G\right) & \mathcal{V} = \rho_G^{-1}\left(gG_{\nu}g^{-1}\right) \\ \Leftrightarrow \left(\exists w \in V\Gamma_H, h \in H\right) & \mathcal{V} = \rho_H^{-1}\left(hH_wh^{-1}\right). \end{split}$$

 \rightarrow Characterize the V's sent to a vertex of the exten° graph, independently from $\rho_{G},\,\rho_{H}.$

$$\begin{split} \left(\exists \nu \in V\Gamma_G, g \in G\right) & \mathcal{V} = \rho_G^{-1}\left(gG_{\nu}g^{-1}\right) \\ \Leftrightarrow \left(\exists w \in V\Gamma_H, h \in H\right) & \mathcal{V} = \rho_H^{-1}\left(hH_wh^{-1}\right). \end{split}$$

- \rightarrow Characterize the V's sent to a vertex of the exten° graph, independently from $\rho_G,\,\rho_H.$
 - ▶ Edges (idea) Show that $\rho_G(V)$ and $\rho_G(V')$ commute iff V normalizes V'.

$$\begin{split} \left(\exists \nu \in V\Gamma_G, g \in G\right) & \mathcal{V} = \rho_G^{-1}\left(gG_{\nu}g^{-1}\right) \\ \Leftrightarrow \left(\exists w \in V\Gamma_H, h \in H\right) & \mathcal{V} = \rho_H^{-1}\left(hH_wh^{-1}\right). \end{split}$$

- \rightarrow Characterize the V's sent to a vertex of the exten° graph, independently from $\rho_G,\,\rho_H.$
 - ▶ Edges (idea) Show that $\rho_G(V)$ and $\rho_G(V')$ commute iff V normalizes V'.

$$\begin{split} \left(\exists \nu \in V\Gamma_G, g \in G\right) & \mathcal{V} = \rho_G^{-1}\left(gG_\nu g^{-1}\right) \\ \Leftrightarrow \left(\exists w \in V\Gamma_H, h \in H\right) & \mathcal{V} = \rho_H^{-1}\left(hH_w h^{-1}\right). \end{split}$$

- \rightarrow Characterize the V's sent to a vertex of the exten° graph, independently from $\rho_G,\,\rho_H.$
 - ▶ Edges (idea) Show that $\rho_G(V)$ and $\rho_G(V')$ commute iff V normalizes V'.
- \rightarrow Characterize the \mathcal{V} and \mathcal{V}' sent to adjacent vertices in the exten° graph, independently from ρ_{G} , ρ_{H} .

Let $\mathcal{V} \subseteq \cup_{\mathfrak{i}} \operatorname{Orb}(x_{\mathfrak{i}}) \times \operatorname{Orb}(x_{\mathfrak{i}})$

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

> We say that (\mathcal{V}, ρ_H) is of **vertex type** if

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that $(\mathcal{V}, \rho_{\mathbb{H}})$ is of **vertex type** if there exist $X = \bigsqcup_{i} X_{i}$ and $\{w_{i}\}_{i \in I}$ st

Let
$$\mathcal{V} \subseteq \cup_{\mathfrak{i}} \operatorname{Orb}(x_{\mathfrak{i}}) \times \operatorname{Orb}(x_{\mathfrak{i}})$$

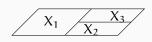
▶ We say that $(\mathcal{V}, \rho_{\mathsf{H}})$ is of **vertex type** if there exist $X = \sqcup_i X_i$ and $\{w_i\}_{i \in I}$ st

$$(\forall (x,y) \in \mathcal{V} : x,y \in X_i) \quad \rho_H(x,y) \in H_{w_i}$$

Let
$$V \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

▶ We say that (V, ρ_H) is of **vertex type** if there exist $X = \bigsqcup_i X_i$ and $\{w_i\}_{i \in I}$ st

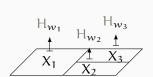
$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \, : \, x,y \in X_{\mathfrak{i}} \end{pmatrix} \quad \rho_{\mathsf{H}}(x,y) \in \mathsf{H}_{w_{\mathfrak{i}}}$$



Let
$$V \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that (\mathcal{V}, ρ_{H}) is of **vertex type** if there exist $X = \bigsqcup_{i} X_{i}$ and $\{w_{i}\}_{i \in I}$ st

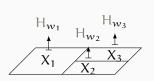
$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \, : \, x,y \in X_i \end{pmatrix} \quad \rho_H(x,y) \in H_{w_i}$$



Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that $(\mathcal{V}, \rho_{\mathsf{H}})$ is of **vertex type** if there exist $X = \bigsqcup_{i} X_{i}$ and $\{w_{i}\}_{i \in I}$ st

$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \, : \, x,y \in X_i \end{pmatrix} \quad \rho_H(x,y) \in H_{w_i}$$

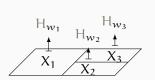


▶ We show that $(\mathcal{V}, \rho_{\mathsf{G}})$ is of vertex type iff

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that (\mathcal{V}, ρ_{H}) is of **vertex type** if there exist $X = \bigsqcup_{i} X_{i}$ and $\{w_{i}\}_{i \in I}$ st

$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \,:\, x,y \in X_i \end{pmatrix} \quad \rho_H(x,y) \in H_{w_i}$$

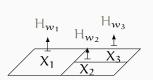


> We show that (\mathcal{V}, ρ_G) is of vertex type iff (\mathcal{V}, ρ_H) is.

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that (\mathcal{V}, ρ_{H}) is of **vertex type** if there exist $X = \bigsqcup_{i} X_{i}$ and $\{w_{i}\}_{i \in I}$ st

$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \, : \, x,y \in X_i \end{pmatrix} \quad \rho_H(x,y) \in H_{w_i}$$

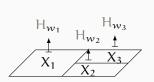


- > We show that (\mathcal{V}, ρ_G) is of vertex type iff (\mathcal{V}, ρ_H) is.
- ▶ In particular for $\mathcal{V} := \rho_{\mathsf{G}}^{-1}(\mathsf{G}_{\nu})$

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

▶ We say that $(\mathcal{V}, \rho_{\mathbb{H}})$ is of **vertex type** if there exist $X = \sqcup_i X_i$ and $\{w_i\}_{i \in I}$ st

$$\begin{pmatrix} \forall (x,y) \in \mathcal{V} \, : \, x,y \in X_i \end{pmatrix} \quad \rho_{\mathsf{H}}(x,y) \in \mathsf{H}_{w_i}$$



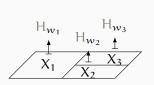
- ▶ We show that (V, ρ_G) is of vertex type iff (V, ρ_H) is.
- ▶ In particular for $\mathcal{V} := \rho_{\mathsf{G}}^{-1}(\mathsf{G}_{\nu})$ there exists $\{w_i\}_i$ such that

$$\rho_{H}(x,y)\in H_{w_{i}}\quad \text{for all } (x,y)\in \mathcal{V},\ x,y\in X_{i}.$$

Let
$$\mathcal{V} \subseteq \cup_i \operatorname{Orb}(x_i) \times \operatorname{Orb}(x_i)$$

➤ We say that $(\mathcal{V}, \rho_{\mathbb{H}})$ is of **vertex type** if there exist $X = \sqcup_i X_i$ and $\{w_i\}_{i \in I}$ st

$$\left(\forall (x,y) \in \mathcal{V} \,:\, x,y \in X_i\right) \quad \rho_{\mathsf{H}}(x,y) \in \mathsf{H}_{w_i}$$



- ▶ We show that (V, ρ_G) is of vertex type iff (V, ρ_H) is.
- ▶ In particular for $\mathcal{V} := \rho_{\mathsf{G}}^{-1}(\mathsf{G}_{\nu})$ there exists $\{w_i\}_i$ such that

$$\rho_{H}(x,y)\in H_{w_{i}}\quad \text{for all } (x,y)\in \mathcal{V},\ x,y\in X_{i}.$$

▶ Define a map $\theta: X \to \mathrm{Isom}(\Gamma_G, \Gamma_H)$ st

$$\theta(x): v \in V\Gamma_G \to w_i \text{ if } x \in X_i.$$